Aerosol Microphysical and Radiative Effects on Continental Cloud Ensembles
نویسندگان
چکیده
Aerosol-cloud-radiation interactions represent one of the largest uncertainties in the current climate assessment. Much of the complexity arises from the non-monotonic responses of clouds, precipitation and radiative fluxes to aerosol perturbations under various meteorological conditions. In this study, an aerosol-aware Weather Research and Forecasting (WRF) model is used to investigate the microphysical and radiative effects of aerosols in three weather systems during the March 2000 Cloud Intensive Observational Period campaign at the Southern Great Plains site of the US Atmospheric Radiation Measurement Program. Three cloud ensembles with different meteorological conditions are simulated, including a low-pressure deep convective cloud system, a series of lessprecipitating stratus and shallow cumulus, and a cold frontal passage. The WRF simulations are evaluated by the available observations of cloud fraction, liquid water path, precipitation, and surface temperature. The microphysical properties of cloud hydrometeors, such as their mass and number concentrations, generally show monotonic trends as a function of cloud condensation nuclei concentrations. Aerosol radiative effects
منابع مشابه
New approaches to quantifying aerosol influence on the cloud radiative effect.
The topic of cloud radiative forcing associated with the atmospheric aerosol has been the focus of intense scrutiny for decades. The enormity of the problem is reflected in the need to understand aspects such as aerosol composition, optical properties, cloud condensation, and ice nucleation potential, along with the global distribution of these properties, controlled by emissions, transport, tr...
متن کاملImplementation of a two-moment bulk microphysics scheme to the WRF model to investigate aerosol-cloud interaction
[1] A two-moment bulk microphysical scheme has been implemented into the Weather Research and Forecasting (WRF) model to investigate the aerosol-cloud interaction. The microphysical scheme calculates the mass mixing ratios and number concentrations of aerosols and five types of hydrometeors and accounts for various cloud processes including warm and mixed phase microphysics. The representation ...
متن کاملMicrophysical effects determine macrophysical response for aerosol impacts on deep convective clouds.
Deep convective clouds (DCCs) play a crucial role in the general circulation, energy, and hydrological cycle of our climate system. Aerosol particles can influence DCCs by altering cloud properties, precipitation regimes, and radiation balance. Previous studies reported both invigoration and suppression of DCCs by aerosols, but few were concerned with the whole life cycle of DCC. By conducting ...
متن کاملPreface to special section: Atmospheric Radiation Measurement Program May 2003 Intensive Operations Period examining aerosol properties and radiative influences
[1] Atmospheric aerosols influence climate by scattering and absorbing radiation in clear air (direct effects) and by serving as cloud condensation nuclei, modifying the microphysical properties of clouds, influencing radiation and precipitation development (indirect effects). Much of present uncertainty in forcing of climate change is due to uncertainty in the relations between aerosol microph...
متن کاملTotal aerosol effect: radiative forcing or radiative flux perturbation?
Uncertainties in aerosol radiative forcings, especially those associated with clouds, contribute to a large extent to uncertainties in the total anthropogenic forcing. The interaction of aerosols with clouds and radiation introduces feedbacks which can affect the rate of precipitation formation. In former assessments of aerosol radiative forcings, these effects have not been quantified. Also, w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017